## POZNAN UNIVERSITY OF TECHNOLOGY



#### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

# **COURSE DESCRIPTION CARD - SYLLABUS**

Course name

Tissue and genetic engineering

Course

Field of study

**Biomedical Engineering** 

Area of study (specialization)

-

Level of study

Second-cycle studies

Form of study

full-time

Year/Semester

1/2

Profile of study

general academic

Course offered in

Polish

Requirements

compulsory

#### **Number of hours**

Lecture Laboratory classes Other (e.g. online)

15

Tutorials Projects/seminars

15

**Number of credit points** 

2

# Lecturers

Responsible for the course/lecturer:

Responsible for the course/lecturer:

dr Piotr Ruszkowski, PhD, PharmD email: pruszkowski@gmail.com

# **Prerequisites**

General knowledge of human biology, anatomy and physiology. Basic knowledge in cell biology and physiology. The ability to think logically and planning. Under-standing the need to acquire knowledge and continuing education

## POZNAN UNIVERSITY OF TECHNOLOGY



### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

# **Course objective**

Obtaining of the knowledge in the area of cell and tissue culture methodology and its practical indications in medicine and science

## **Course-related learning outcomes**

## Knowledge

- 1. The student has knowledge of the basics of tissue engineering and knows all types of cells and growth factors used as biomaterials
- 2. The student has knowledge of the methods and tools used in tissue and genetic engineering
- 3. The student knows the basic methods, techniques, tools and materials used to solve complex engineering tasks in the field of biomedical engineering, in particular virtual design methods and technologies.

### Skills

- 1. The student is able to communicate using various techniques in the professional environment and other environments (also in other foreign languages) in the field of biomedical engineering
- 2. Student is able to use tissue and genetic engineering in biomedical engineering
- 3. Student has the ability to use biomaterial and tissue testing methods in biomedical engineering
- 4. Student is able to propose improvements to existing technical solutions in medicine.

#### Social competences

- 1. Student is able to work in group
- 2. The student is aware of the basic importance of tissue and genetic engineering and is able to transfer this knowledge .

## Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lectures: Test covering all the knowledge of the subject, carried out at the end of the semester

Projects: Credit based on an oral or written answer regarding the content of each exercise

#### **Programme content**

#### Lecture:

- 1. Tissue and cell cultures in medicine and laboratory
- 2. Methodology of cell cultures (passages, cell banks, laboratory regulations)
- 3. Growth factors and cell culture mediums in laboratory
- 4. Products of tissue engineering

## POZNAN UNIVERSITY OF TECHNOLOGY



## EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 5. Tools in tissue engineering
- 6. Genetic engineering and practical aspects
- 7. Gene therapy general aspects
- 8. Monoclonal antibodies as potent drugs and biomedical markers
- 9. Biocompatibility and biosimilarity. Methodology and ISO regulations
- 10. Tissue engineering in the industry.

# Project:

- 1. General cell culture methods and equipment
- 2. Methods of cell analysis (confluency tests)
- 3. Detection of biosimiliraty (methodology and regulations)
- 4. Cytotoxicity tests
- 5. Optical methods used in tissue engineering.

## **Teaching methods**

Lecture: multimedia presentation.

Project: practical aspects of tissue engineering. Recent reviews and publications.

## **Bibliography**

#### **Basic**

- 1. Hodowla komórek i tkanek S. Stokłosa wyd. 1 PWN 2008
- 2. Tissue Engineering Bernhard O. Palsson, Sangeeta N. Bhatia, Aug 9, 2003

#### Additional

A laboratory course in tissue engineering Melissa Courtis Micou, Dawn Kilkenny, August 2012, CRC Press

# Breakdown of average student's workload

|                                                               | Hours | ECTS |
|---------------------------------------------------------------|-------|------|
| Total workload                                                | 50    | 2,0  |
| Classes requiring direct contact with the teacher             | 32    | 1,2  |
| Student's own work (literature studies, preparation for exam, | 18    | 0,8  |
| project preparation) <sup>1</sup>                             |       |      |

<sup>&</sup>lt;sup>1</sup> delete or add other activities as appropriate